Doc. No.	Q/GEB CJ062910-2011
Edition No.	3.1
Sheet	1/7

Polymer Lithium-ion Battery

Product Specification

(For high discharge ratio battery)

Model: GEB201212C

General Electronics Battery Co., Ltd.

Address: Huihuang Industrial Building, Huada Road, Dalang, Longhua, Baoan District, Shenzhen 518109, P.R. China

Tel: 86-755-81762726

Fax: 86-755-81762723 Website: www.gebattery.com.cn

All 6 Sheets

Polymer Lithium-ion battery Product Specification

Doc. No.	Q/GEB CJ062910-2011
Edition No.	3.1
Sheet	2/7

1、Scope:

This product specification describes GEB polymer lithium-ion battery. Please using the test methods that recommend in this specification. If you have any opinions or advices about the test items and methods, please contact us. Please read the cautions recommended in the specifications first, take the credibility measure of the cell's using.

If the cells should be using at the environment that not preferred in this document, please connect with our first and get our authorization.

It is claimed that we should have no any responsibility with the contingency and loss due to the cells' wrong usage (not preferred in the product specification).

2 Product Type, Model and Dimension:

2.1 Type: Polymer lithium-ion battery

2.2 Model: 201212C (Cell or adding Ni tabs)

2.3 Cell Dimension(Max, Thickness \times Width \times Length, mm³): <u>2.2 \times 12.5 \times 12.5 Pack Dimension(Max, Thickness \times Width \times Length, mm³): /</u>

3 Specification:

Item		Specifications	Remark	
Nominal Capacity		<u>10 </u> mAh	0.2C ₅ A discharge	
Nominal	Voltage	3.7V	Average Voltage at 0.2C5A discharge	
Charge C	Current	Standard: $0.2 C_5 A$; Max: $1C_5 A$	Working temperature: 0~45°C	
Charge cut-o	off Voltage	$4.20 \pm 0.05 V$		
Discharge	Current	Continuously: 10C ₅ A; Max: 15C ₅ A	Working temperature: 0~60°C	
Discharge cut-off Voltage		2.75V		
Cell Vo	oltage	3.8~4.0V	When leave factory	
Imped	ance	$\leq 650 \mathrm{m}\Omega$	AC 1KHz after 50% charge	
Weig	ght	Approx: <u>0.50 g</u>		
~	≤ 1 month	-20~45°C		
Storage temperature	\leq 3month	0∼30°C	Best $20\pm5^{\circ}$ C for long-time	
······p provore	≤6month	20±5°C	storage	
Storage humidity		65±20% RH		

4、 General Performance:

Definition of Standard charging method: At 20 ± 5 °C, charging the cell initially with constant current 0.2C₅A till voltage 4.2V, then with constant voltage 4.2V till current declines to 0.05C₅A.

	Item	Test Methods Performan		
4.1	0.2C Capacity	After standard charging, laying the battery 0.5h, then discharging at $0.2C_5A$ to voltage 2.75V, recording the discharging time.		
4.2	8C Discharge	After standard charging, laying the battery 0.5h, then discharging at		
4.3	Cycle Life	Constant current $1C_5A$ charge to 4.2V, then constant voltage charge to current declines to $0.05C_5A$, stay 5min, constant current $1C_5A$ discharge to 2.75V, stay 5min. Repeat above steps till continuously discharging time less than 36min.	≥300times	

Polymer Lithium-ion battery Product Specification	Doc. No.	Q/GEB CJ062910-2011
	Edition No.	3.1
	Sheet	3/7

4.4	Capability of keeping electricity	20 ± 5 °C, After standard charging, laying the battery 28days, discharging at 0.2C ₅ A to voltage 2.75V, recording the discharging time.	≥240min
4.5	Shelf life	After standard full charging, laying the battery in a storage room at 20 ± 5 °C, until the OCV reach 3.4V, recording the days	Around 365 days

5、 Environment Performance:

	Item Test Methods Performance		Performance
5.1	High temperature	After standard charging, laying the battery 4h at 60° C, then discharging at 0.2C ₅ A to voltage 2.75V, recording the discharging time.	≥270min
5.2	Low temperature	After standard charging, laying the battery 4h at -20° C, then discharging at $0.2C_5$ A to voltage 2.75V, recording the discharging time.	≥210min
5.3	Constant humidity and temperature	After standard charging, laying the battery 48h at 40 ± 2 °C, RH 93 $\pm 2\%$. Recording 0.2C ₅ A discharging time	No distortion No electrolytes leakage ≥270 min
5.4	Temperature shock	After standard charging, battery stored at -20° C for 2 hours, then stored at 50° C for 2 hours. Repeat 10 times.	No electrolytes leakage

6 Mechanical Performance:

	Item	Test Methods Performance	
6.1	Vibration	After standard charging, put battery on the vibration table. 30 min experiment from X,Y,Z axis. Scan rate: 1 oct/min; Frequency 10-30Hz, Swing 0.38mm; Frequency 30-55Hz, Swing 0.19mm.	
6.2	Collision	After vibration test, batteries were laying on the vibration table about X, Y, Z axis. Max frequency acceleration: $100m/s^2$; collision times per minutes: 40 ~80; frequency keeping time 16ms; all collision times 1000 ± 10 .	
6.3	Drop	Random drop the battery from 10m height onto concrete one times. No explosion or fire	

7、Safety Test:

Test conditions: The following tests must be measured at flowing air and safety protection conditions. All batteries must standard charge and lay 24h.

	Item Test Methods Perf		Performance
7.1	Over charge	At $20\pm5^{\circ}$ C, charging batteries with constant current $3C_5A$ to voltage 5V, then with constant voltage 5V till current decline to 0. Stop test till batteries' temperature 10° C lower than max temperature.	No explosion or fire
7.2	Over discharge	At 20 \pm 5 $^\circ C$, discharge battery with 0.2C5A continuously 12.5h.	No explosion or fire
7.3	7.3 Short-circuit At $20\pm5^{\circ}$ C, connect batteries' anode and cathode by wire which impedance less than $50 \text{ m} \Omega$, keep 6h.		No explosion or fire
7.4	Extrusion	At $20\pm5^{\circ}$ °C, put the battery in two parallel steal broad, No explosion	

Polymer Lithium-ion battery Product Specification

Doc. No.	Q/GEB CJ062910-2011
Edition No.	3.1
Sheet	4/7

		add pressure 13kN.	
7.5	Thermal shock	Put the battery in the oven. The temperature of the oven is to be raised at $5\pm1^{\circ}$ C per minute to a temperature of $130\pm2^{\circ}$ C and remains 60 minutes.	No explosion or fire

8、Cautions:

8.1 Cautions of batteries' operation

The batteries must be careful of proceed the operation for it's soft package.

8.1.1 Aluminum packing materials

The aluminum packing material was easily damaged by the sharp edge part, such as nickel-tabs.

Fig.1. Exterior schematic of polymer lithium-ion cells

- (1) Forbid to use the sharp part touching the battery;
- (2) Should cleaning working condition, avoiding the sharp edge part existence;
- (3) Forbid to pierce the battery with nail and other sharp items;
- (4) The battery was forbidden with metal, such as necklace, hairpin etc in transportation and storage.

8.1.2 Sealed edge

Sealing edge is very easily damaged and don't bend it.

The Al interlayer of package has good electric performance. It's forbidden to connect with exterior component for preventing short-circuits.

8.1.3 Folding edge

The folding edge is formed in batteries' processes and passed all hermetic tests, don't open or deform it. The Al interlayer of package has good electric performance. It's forbidden to connect with exterior component for preventing short-circuits.

Polymer Lithium-ion battery Product Specification

Doc. No.	Q/GEB CJ062910-2011
Edition No.	3.1
Sheet	5/7

Reverse folding

insulated

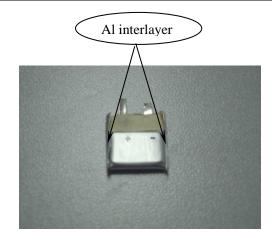


Fig.2. Single folding edge schematic of PL cells

Fig.3. Reverse folding edge schematic of PL cells

8.1.4 Tabs

The batteries' tabs are not so stubborn especially for aluminum tabs. Don't bend tabs.

8.1.5 Mechanical shock Don't fall, hit, bent the batteries' body.

8.1.6 Short-circuit

Short-circuit is strictly prohibited. It should damage batteries badly.

8.2 Standard Test Environment for polymer lithium-ion batteries

Environment temperature: 20±5℃ Humidity: 45-85%

8.3 Cautions of charge & discharge

8.3.1 Charge

Charging current should be lower than values that recommend below. Higher current and voltage charging may cause damage to cell electrical, mechanical, safety performance and could lead heat generation or leakage.

- (1) Batteries charger should charging with constant current and constant voltage mode;
- (2) Charging current should be lower than (or equal to $)1C_5A$;
- (3) Temperature $0 \sim 45^{\circ}$ c is preferred when charging;
- (4) Charging voltage must be lower than 4.25V.

8.3.2 Discharge

- (1) Discharging current must be lower than (or equal to) 15C5A;
- (2) Temperature $0 \sim 60^{\circ}$ C is preferred when discharging;
- (3) Discharging voltage must not be lower than 2.75V.
- 8.3.3 Over-discharge

It should be noted that the cell would be at an over-discharge state by its self-discharge. In order to prevent over-discharge, the cell shall be charged periodically to keeping voltage between 3.6-3.9V. Over-discharge may cause loss of cell performance. It should be noted that the cell would not discharge till voltage lower than 2.5V.

8.4 Storage of polymer lithium-ion batteries

The environment of long-time storage:

Temperature: $20\pm5^{\circ}$ C;

Humidity: 45-85%;

Batteries were $40 \sim 60\%$ charged.

8.5 Transportation of polymer lithium-ion batteries

The batteries should transportation with $10 \sim 50\%$ charged states.

8.6 Date Code

Outside of the package carton, the date code means Time ready for delivery.

For Example: 2010-02-12, it is year-month-date.

8.70thers

Please note cautions below to prevent cells' leakage, heat generation and explosion. Prohibition of disassembly cells;

Polymer Lithium-ion battery						
Product Specification						

Prohibition of cells immersion into liquid such as water or seawater;

Prohibition of dumping cells into fire;

Prohibition of using damaged cells. The cells with a smell of electrolyte or leakage must be placed away from fire to avoid firing.

In case of electrolyte leakage contact with skin, eye, physicians shall flush the electrolyte immediately with fresh water and medical advise is to be sought.

9. Notice of Designing Battery Pack:

9.1 Pack design

Battery pack should have sufficient strength and battery should be protected from mechanical shock. No sharp edge components should be inside the pack contains the battery.

9.2 PCM design

The overcharge threshold voltage should not be exceeding 4.25V.

The over-discharge threshold voltage should not be lower than 2.75V.

The PCM should have short protection function built inside.

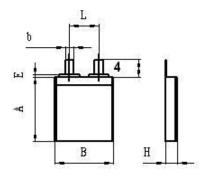
9.3 Tab connection

Ultrasonic welding or spot welding is recommended to connect battery with PCM or other parts.

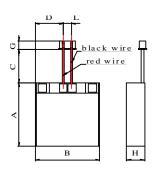
If apply manual solder method to connect tab with PCM, the notice below is very important to ensure battery performance.

(1) The electric iron should be temperature controlled and ESD safe;

- (2) Soldering temperature should not exceed 350° C;
- (3) Soldering time should not be longer than 3s, keep battery tab cold down before next soldering;
- (4) Soldering times should not exceed 5 times;

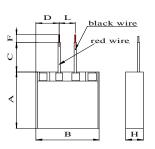

(5) Directly heat cell body is strictly prohibited, battery may be damaged by heat above approx. 100° C.

9.4 Cell fixing

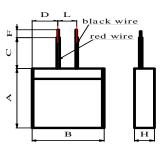

The battery should be fixed to the battery pack by its large surface area. No cell movement in the battery pack should be allowed.

Doc. No.	Q/GEB CJ062910-2011			
Edition No.	3.1			
Sheet	7/7			

10. Schematic of Battery:



✓ Cell or adding Ni tabs



 \Box Cell adding PCB, wire, plugs

Parameter: √

□.Cell adding PCB, wire

 $\hfill\square$ Cell adding wire

Sign	Item	Max (mm)	Remark	Sign	Item	Max (mm)	Remark
Α	Length	12.0	± 0.5	L	Space between Tabs	5	$\pm 1 \text{ mm}$
В	Width	12.0	± 0.5	Е	PP membrane Length	N/A	N/A
Η	Thickness	2.0	± 0.2	b	Tab Width	1.5	± 0.2
	Wire Standard	/			Tab length	4	$\pm 1 \text{ mm}$