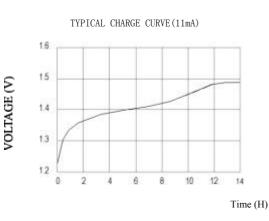
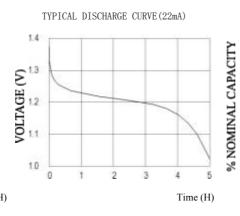
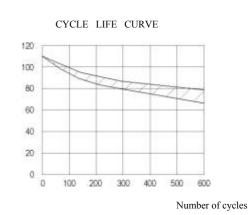


100H Ni-MH BUTTON CELL

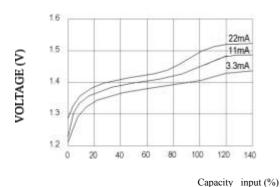

TECHNICAL DATA

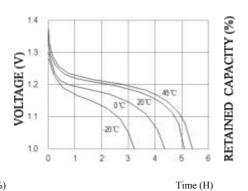


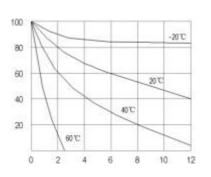


model	Voltage	Capacity	Recommended Trickle Charge Current	Nominal Charge Current	Normal Charging Time	Nominal Discharge Current	Weight
100H	1.2V	110mAh	3.3~5.5mA	11mA	14~16h	22mA	3.6g

TECHNICAL CHARACTERISTICS






TYPICAL CHARGE CURVE AT VARIOUS CURRENTS

DISCHARGE CURVE AT VARIOUS TEMPERATURES(22mA)

SELF DISCHARGE RATE AT VARIOUS TEMPERATURES

Time (Months)

TECHNICAL INFORMATION

1. APPLICATION

This specification applies to the Ni-MH batteries

Model: 100H

2. CELL AND TYPE

2.1 Cell :Sealed Ni-MH Button Cell

2.2 Type :Button type2.3 Size type : 1.2V

3. RATINGS

3.1 Nominal voltage : 1.2V

3.2 Nominal capacity : 110mAh/0.2CmA

3.3 Typical weight : 3.6g

3.4 Standard charge : 11mA×14hours 3.5 Rapid charge : 22mA×6hours

Trickle current : 3.3mA

3.6 Discharge cut-off voltage: 1.0V

3.7 Temperature range for operation (Humidity: Max.85%)

Standard charge $0\sim+45^{\circ}\text{C}$ Rapid charge $+10\sim+45^{\circ}\text{C}$ Trickle charge $0\sim+45^{\circ}\text{C}$ Discharge $-10\sim+45^{\circ}\text{C}$

3.8 Temperature range for storage (Humidity: Max.85%)

Within 2 years $-20\sim +35^{\circ}$ C Within 6 months $-20\sim +45^{\circ}$ C Within a month $-20\sim +45^{\circ}$ C Within a week $-20\sim +55^{\circ}$ C

4.ASSEMBLY & DIMENSIONS

Per attached drawing

5. PERFORMANCE

5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery)

ambient conditions

Temperature: $+25\pm5$ °C Humidity: $60\pm20\%$

Note 1

Standard charge : 11mA×14hours Standard discharge : 0.2C to 1.0V

5.2 TEST METHOD & PERFORMANCE

Test	Unit	Specification	Conditions	Remarks
Compaity	na A la	≥110	Standard	Up to 3 cycies
Capacity	mAh		Charge/discharge	Are allowed
Open Circuit	Voltage	≥1.3	After 1 hour standard	
Voltage(OCV)	(V)		Charge	
Internal	mΩ/cell	≤900	Upon fully charge	
Impedance			(1KHz)	
High rate	Minnete	≥60	Standard charge	
Discharge(0.5C)	Minute		Before discharge	
Discharge	A	55	Maximum continuous	
Current	mA		Discharge current	
Orven alterna		No leakage	3.3mA(0.03C) charge	
Over charge		Not explosion	one year	
Charge	mAh	88	Standard charge;	
Charge			Storage: 28 days;	
Retention			Standard discharge	
Cycle Life	Cycle	≥500	IEC285(1993)4.4.1	
Laglaga		No leakage nor	Fully charge at 11mA,	
Leakage		Deformation	Stand 14 days	

Note 2 IEC285(1993)4.4.1 cycle life

Cycle number	Charge	Rest	Discharge
1-50	11mA for 14h		22mA for 5h

50 cycles of test as in the following table condition is repeated, The discharge time of the $100^{th},200^{th},400^{th},500^{th}$ is more than 5 hours. (Ambient temperature is $20\pm5^{\circ}$ C)

5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of $33\pm3\,^\circ\text{C}$ and a relative humidity of $80\pm5\%$

6. OTHERS

- 6.1 We recommend you to set the cut-off voltage at 1.0V/cell
- 6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting insufficient use of the available capacity
- 6.3 If it is below 1.0V/cell, the battery may have discharge or reverse charge to the cell

7. PRECAUTION

The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at 20±5°C at a constant current of 0.2CmA to a final voltage of 1.0V/cell.

- 7.1 Avoid throwing cells into a fire or attempting to disassemble them.
- 7.2 Avoid short circuiting the cells.
- 7.3 Avoid direct solidarity to cells.
- 7.4 Observe correct polarity when connecting.
- 7.5 Do not charge with more than our specified current.
- 7.6 Use cells only within the specified working temperature range.
- 7.7 Store cells in dry and cool place.