30H Ni-MH BUTTON CELL

TECHNICAL DATA

<table>
<thead>
<tr>
<th>model</th>
<th>Voltage</th>
<th>Capacity</th>
<th>Recommended Trickle Charge Current</th>
<th>Nominal Charge Current</th>
<th>Normal Charging Time</th>
<th>Nominal Discharge Current</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>30H</td>
<td>1.2V</td>
<td>40mAh</td>
<td>1.2~2mA</td>
<td>4mA</td>
<td>14~16h</td>
<td>8mA</td>
<td>1.7g</td>
</tr>
</tbody>
</table>

TECHNICAL CHARACTERISTICS

TYPICAL CHARGE CURVE (4mA)

TYPICAL DISCHARGE CURVE (8mA)

CYCLE LIFE CURVE

TYPICAL CHARGE CURVE AT VARIOUS CURRENTS

DISCHARGE CURVE AT VARIOUS TEMPERATURES (8mA)

SELF DISCHARGE RATE AT VARIOUS TEMPERATURES
1. APPLICATION
 This specification applies to the Ni-MH batteries
 Model : 30H

2. CELL AND TYPE
 2.1 Cell : Sealed Ni-MH Button Cell
 2.2 Type : Button type
 2.3 Size type : 1.2V

3. RATINGS
 3.1 Nominal voltage : 1.2V
 3.2 Nominal capacity : 40mAh/0.2CmA
 3.3 Typical weight : 1.7g
 3.4 Standard charge : 4mA×14hours
 3.5 Rapid charge : 8mA×6hours
 Trickle current : 1.2mA
 3.6 Discharge cut-off voltage: 1.0V
 3.7 Temperature range for operation (Humidity: Max.85%)
 Standard charge 0~+45°C
 Rapid charge +10~+45°C
 Trickle charge 0~+45°C
 Discharge -10~+45°C
 3.8 Temperature range for storage (Humidity: Max.85%)
 Within 2 years -20~+35°C
 Within 6 months -20~+45°C
 Within a month -20~+45°C
 Within a week -20~+55°C

4. ASSEMBLY & DIMENSIONS
5. PERFORMANCE

5.1 TEST CONDITIONS
The test is carried out with new batteries (within a month after delivery)
ambient conditions
 Temperature: +25±5°C
 Humidity: 60±20%

Note 1
 Standard charge : 4mA×14hours
 Standard discharge : 0.2C to 1.0V

5.2 TEST METHOD & PERFORMANCE

<table>
<thead>
<tr>
<th>Test</th>
<th>Unit</th>
<th>Specification</th>
<th>Conditions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>mAh</td>
<td>≥40</td>
<td>Standard charge/discharge</td>
<td>Up to 3 cycles Are allowed</td>
</tr>
<tr>
<td>Open Circuit Voltage (OCV)</td>
<td>Voltage(V)</td>
<td>≥1.3</td>
<td>After 1 hour standard Charge</td>
<td></td>
</tr>
<tr>
<td>Internal Impedance</td>
<td>mΩ/cell</td>
<td>≤1500</td>
<td>Upon fully charge (1KHz)</td>
<td></td>
</tr>
<tr>
<td>High rate Discharge(0.5C)</td>
<td>Minute</td>
<td>≥60</td>
<td>Standard charge Before discharge</td>
<td></td>
</tr>
<tr>
<td>Discharge Current</td>
<td>mA</td>
<td>20</td>
<td>Maximum continuous Discharge current</td>
<td></td>
</tr>
<tr>
<td>Over charge</td>
<td></td>
<td>No leakage</td>
<td>1.2mA(0.03C) charge one year</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not explosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge Retention</td>
<td>mAh</td>
<td>32</td>
<td>Standard charge; Storage: 28 days; Standard discharge</td>
<td></td>
</tr>
<tr>
<td>Cycle Life</td>
<td>Cycle</td>
<td>≥500</td>
<td>IEC285(1993)4.4.1</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td></td>
<td>No leakage nor Deformation</td>
<td>Fully charge at 4mA, Stand 14 days</td>
<td></td>
</tr>
</tbody>
</table>

Note 2 IEC285(1993)4.4.1 cycle life

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>Charge</th>
<th>Rest</th>
<th>Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-50</td>
<td>4mA for 14h</td>
<td>8mA for 5h</td>
<td></td>
</tr>
</tbody>
</table>

50 cycles of test as in the following table condition is repeated, The discharge time of the 100th, 200th, 400th, 500th is more than 5 hours. (Ambient temperature is 20±5°C)

5.3 Humidity
The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of 33±3°C and a relative humidity of 80±5%

6. OTHERS
6.1 We recommend you to set the cut-off voltage at 1.0V/cell
6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting in insufficient use of the available capacity
6.3 If it is below 1.0V/cell, the battery may have discharge or reverse charge to the cell

7. PRECAUTION
The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at 20±5℃ at a constant current of 0.2CmA to a final voltage of 1.0V/cell.
7.1 Avoid throwing cells into a fire or attempting to disassemble them.
7.2 Avoid short circuiting the cells.
7.3 Avoid direct solidarity to cells.
7.4 Observe correct polarity when connecting.
7.5 Do not charge with more than our specified current.
7.6 Use cells only within the specified working temperature range.
7.7 Store cells in dry and cool place.