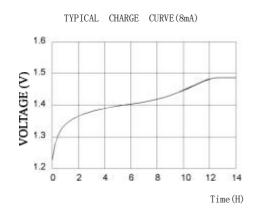
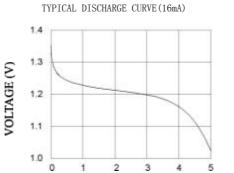
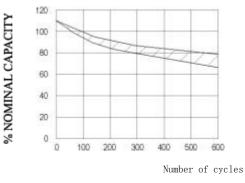



# 60H1A Ni-MH BUTTON CELL


# TECHNICAL DATA





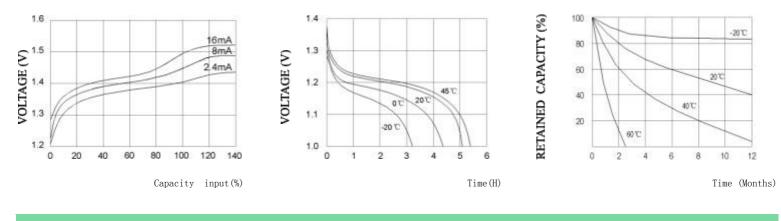


| model | Voltage Capacity |       | Recommended<br>Trickle Charge Current | Nominal<br>Charge Current | Normal<br>Charging Time | Nominal<br>Discharge Current | Weight |
|-------|------------------|-------|---------------------------------------|---------------------------|-------------------------|------------------------------|--------|
| 60H1A | 1.2V             | 80mAh | 2.4~4mA                               | 8mA                       | 14~16h                  | 16mA                         | 3.2g   |

# TECHNICAL CHARACTERISTICS










TYPICAL CHARGE CURVE AT VARIOUS CURRENTS

DISCHARGE CURVE AT VARIOUS TEMPERATURES (16mA)

Time(H)

SELF DISCHARGE RATE AT VARIOUS TEMPERATURES



# TECHNICAL INFORMATION

#### 1. APPLICATION

This specification applies to the Ni-MH batteries Model : 60H1A

## 2. CELL AND TYPE

- 2.1 Cell :Sealed Ni-MH Button Cell
- 2.2 Type :Button type
- 2.3 Size type : 1.2V

#### 3. RATINGS

- 3.1 Nominal voltage : 1.2V
- 3.2 Nominal capacity : 80mAh/0.2CmA
- 3.3 Typical weight : 3.2g
- 3.4 Standard charge : 8mA×14hours
- 3.5 Rapid charge : 16mA×6hours Trickle current : 2.4mA
- 3.6 Discharge cut-off voltage: 1.0V

# 3.7 Temperature range for operation (Humidity: Max.85%)

| Standard charge | 0~+45 ℃   |
|-----------------|-----------|
| Rapid charge    | +10~+45°C |
| Trickle charge  | 0~+45°C   |
| Discharge       | -10~+45°C |

#### 3.8 Temperature range for storage (Humidity: Max.85%)

| Within 2 years  | <b>-</b> 20∼+35°C |
|-----------------|-------------------|
| Within 6 months | -20~+45℃          |
| Within a month  | <b>-</b> 20∼+45°C |
| Within a week   | -20~+55℃          |

### 4. ASSEMBLY & DIMENSIONS

Per attached drawing

## 5. PERFORMANCE

5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery)

ambient conditions

Temperature: +25±5℃

Humidity: 60±20%

Note 1

Standard charge : 8mA×14hours

Standard discharge : 0.2C to 1.0V

#### 5.2 TEST METHOD & PERFORMANCE

| Test            | Unit       | Specification  | Conditions            | Remarks        |
|-----------------|------------|----------------|-----------------------|----------------|
| Conceity        | m A h      | >90            | Standard              | Up to 3 cycies |
| Capacity        | mAh        | $\geq 80$      | Charge/discharge      | Are allowed    |
| Open Circuit    |            | >1 2           | After 1 hour standard |                |
| Voltage(OCV)    | Voltage(V) | ≥1.3           | Charge                |                |
| Internal        | mΩ/cell    | <000           | Upon fully charge     |                |
| Impedance       | ms2/cen    | ≤900           | (1KHz)                |                |
| High rate       | Minute     |                | Standard charge       |                |
| Discharge(0.5C) | Minute     | ≥60            | Before discharge      |                |
| Discharge       | mA         | 40             | Maximum continuous    |                |
| Current         | IIIA       | 40             | Discharge current     |                |
| Over aborgo     |            | No leakage     | 2.4mA(0.03C) charge   |                |
| Over charge     |            | Not explosion  | one year              |                |
| Charge          |            |                | Standard charge;      |                |
| Retention       | mAh        | 64             | Storage: 28 days;     |                |
| Ketention       |            |                | Standard discharge    |                |
| Cycle Life      | Cycle      | ≥500           | IEC285(1993)4.4.1     |                |
| Leakage         |            | No leakage nor | Fully charge at 8mA,  |                |
| Leakage         |            | Deformation    | Stand 14 days         |                |

#### Note 2 IEC285(1993)4.4.1 cycle life

| Cycle number | Charge      | Rest | Discharge   |
|--------------|-------------|------|-------------|
| 1-50         | 8mA for 14h |      | 16mA for 5h |

50 cycles of test as in the following table condition is repeated, The discharge time of the  $100^{\text{th}},200^{\text{th}},400^{\text{th}},500^{\text{th}}$  is more than 5 hours. (Ambient temperature is  $20\pm5^{\circ}$ C)

#### 5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of  $33\pm3^{\circ}$ C and a relative humidity of  $80\pm5\%$ 

## 6. OTHERS

- 6.1 We recommend you to set the cut-off voltage at 1.0V/cell
- 6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting insufficient use of the available capacity
- 6.3 If it is below 1.0V/cell, the battery may have discharge or reverse charge to the cell

#### 7. PRECAUTION

- The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at  $20\pm5^{\circ}$ C at a constant current of 0.2CmA to a final voltage of 1.0V/cell.
- 7.1 Avoid throwing cells into a fire or attempting to disassemble them.
- 7.2 Avoid short circuiting the cells.
- 7.3 Avoid direct solidarity to cells.
- 7.4 Observe correct polarity when connecting.
- 7.5 Do not charge with more than our specified current.
- 7.6 Use cells only within the specified working temperature range.
- 7.7 Store cells in dry and cool place.